

Reg. CE 884/07 – Prodotti ammessi per la concimazione e per la difesa della vite

Vino Biologico: tecniche di produzione e opportunità di mercato

I.I.S.S. "Caramia – Gigante" – Auditorium Boccardi – Sabato 29 Marzo 2014 – Locorotondo (BA)

DOTT. AGR. VINCENZO VERRASTRO – CIHEAM / IAMB

SAU biologica e in conversione (ha e %) al 31/12/2013

Descrizione coltura	SAU Bio	SAU Conversione	SAU Totale	SAU Conversione/ SAU Tot %
SAU Agrumi	1.026,49	738,95	1.765,44	41,9
SAU Olivo	34.086,75	21.840,42	55.927,17	39,1
SAU Vite da tavola	1.315,87	1.103,96	2.419,83	45,6
SAU Vite da vino	5.262,71	3.752,92	9.015,63	41,6
SAU Altre arboree	6.109,18	2.345,83	8.455,01	27,7
SAU Vivai	43,96	9,70	53,66	18,1
SAU Seminativi	59.468,05	26.237,80	85.705,85	30,6
SAU Prati & Pascoli	9.161,69	6.868,53	16.030,22	42,8
ALTRA SAU	793,37	734,78	1.528,15	48,1
Totale	117.268,07	63.632,89	180.900,96	35,2

Fonte: Elaborazioni ORAB Regione Puglia-IAMB su dati BioBank Open Project

SAU biologica per macrousi e per provincia (n. e % sul totale Puglia), Puglia 2013

	Descrizione	ВА		BR		вт		FG		LE		TA		Pugli	a	
<i>)</i>	coltura	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	
	SAU Vite da tavola	327,48	13,5	54,51	2,3	154,75	6,4	191,92	7,9	28,30	1,2	1.662,87	68,7	2.419,83	100	
	SAU Vite da vino	1.321,56	14,7	1.191,24	13,2	1.277,80	14,2	2.102,04	23,3	830,16	9,2	2.292,83	25,4	9.015,63	100	L

	PROVINCIA	DI TARANTO - VITE DA VINO		
COMUNE	BIOLOGICO	CONVERSIONE	TOTALE	
Manduria	412,53	102,39	514,92	22,46%
Avetrana	378,79	58,4	437,19	19,07%
Castellaneta	122,52	82,89	205,41	8,96%
Ginosa	114,12	69,82	183,94	8,02%
Crispiano	171,27	10,29	181,56	7,92%
Taranto	58,35	107,37	165,72	7,23%
Laterza	99,29	46,07	145,36	6,34%
Mottola	21,48	63,39	84,87	3,70%
Statte	43,47	20,75	64,22	2,80%
Grottaglie	24,17	40,04	64,21	2,80%
Maruggio	53,42	2,44	55,86	2,44%
Lizzano	26,23	21,79	48,02	2,09%
Sava	17,63	16,33	33,96	1,48%
San Marzano di San Giuseppe	6,39	19,33	25,72	1,12%
Faggiano	12,65	4,03	16,68	0,73%
Martina Franca	14,59	1,93	16,52	0,72%
Leporano	8,26	3,94	12,2	0,53%
Massafra	9,47	1,74	11,21	0,49%
Fragagnano	5,98	3,8	9,78	0,43%
San Giorgio Ionico	4,45	1,03	5,48	0,24%
Palagiano	2,1	2,58	4,68	0,20%
Pulsano	0,95	2,47	3,42	0,15%
Palagianello	0	1,06	1,06	0,05%
Torricella	0,73	0,01	0,74	0,03%
Montemesola	0	0,1	0,1	0,00%

Le filiere vitivinicole in Puglia 2013 (n. e %).

Attività	VITE D	A TAVOLA	VITE DA VINO		
Attività	n.	%	n.	%	
Produzione	406	98,54	1.474	94,61	
Produzione + Trasformazione	4	0,97	66	4,24	
Produzione + Trasformazione + Confezionamento	-	-	5	0,32	
Produzione + Trasformazione + Confezionamento + Immagazzinamento (Frigoconservazione)	1	0,24	1	0,06	
Produzione + Trasformazione Confezionamento + Immagazzinamento (Frigoconservazione)+ Etichettatura		1	6	0,39	
Produzione + Trasformazione + Confezionamento + Immagazzinamento (Frigoconservazione) + Etichettatura + Commercializzazione al dettaglio	1	0,24	6	0,39	
		-		-	
TOTALI	412	100	1.558	100	

Fonte: Elaborazioni ORAB Regione Puglia-IAMB su dati BioBank Open Project

Operatori biologici aderenti alla misura 214/1 "Agricoltura biologica" del PSR 2007-2013, Puglia 2013

Province	Operatori PSR (n.)	%	Operatori BIO TOT (n.)*	Operat. PSR / Operat. BIO TOT (%)
ВА	2.006	39,9	2.455	81,7
BR	522	9,7	614	85,0
ВТ	191	3,5	313	61,0
FG	1.008	19,8	1.612	62,5
LE	690	14,4	833	82,8
TA	662	12,7	797	83,1
TOTALI	5.079	100,0	6.624	76,7

Tab. 9: SAU bio totale per macrouso aderente alla mis. 214/1 PSR 2007-2013, Puglia 2013

Macrousi	PSR (ha)	BIO TOT (ha)	Superf. PSR / Superf. BIO TOT (%)
SAU Agrumi	1.537,77	1.765,44	87,1
SAU Olivo	51.137,48	55.927,17	91,4
SAU Vite da tavola	2.078,95	2.419,83	85,9
SAU Vite da vino	6.964,00	9.015,63	77,2
SAU Altre arboree	7.599,00	8.455,01	89,9
SAU Seminativi	68.174,36	85.705,85	79,5

LA GESTIONE DELLA FERTILITA' IN AGRICOLTURA BIOLOGICA

In agricoltura biologica la fertilità e l'attività biologica dei suoli deve essere mantenuta o incrementata attraverso:

- la coltivazione di leguminose, le coperture vegetali e un appropriato piano di rotazione poliennale;
- I'incorporazione nei suoli di materiale organico possibilmente compostato proveniente dalla stessa azienda o da altre aziende che praticano il metodo dell'agricoltura biologica;
- I'uso di fertilizzanti esterni all'azienda sia organici che minerali solo se i metodi citati non siano stati sufficienti a garantire un appropriata nutrizione alla pianta coltivata.

LA GESTIONE DELLA FERTILITA' IN AGRICOLTURA BIOLOGICA

Nell'ambito del metodo di agricoltura biologica la gestione della fertilità presuppone la messa a punto di un sistema colturale che duri nel tempo e che combini le tecniche di gestione del terreno in funzione delle caratteristiche climatiche della zona di produzione delle esigenze pedologiche e delle esigenze varietali.

LA GESTIONE DELLA FERTILITA' IN AGRICOLTURA BIOLOGICA

Un corretto piano di fertilizzazione deve essere fondato sull'adozione di pratiche agronomiche che prevedono l'impiego di:

- coperture vegetali (inerbimento) e loro interramento (sovescio)
- l'impiego di materiale organico di origine vegetale o animale.
- lavorazioni ridotte
- solo in casi di squilibri o deficienze nutrizionali potrà essere consentita la somministrazione di fertilizzanti ausiliari.

Le coperture vegetali

L'utilizzo delle coperture vegetali può essere realizzato con sistemi colturali che prevedono la presenza di piante erbacee da destinare a:

- sovescio totale (interramento dell'intera pianta erbacea)
- sovescio parziale (interramento di residui di piante coltivate per realizzare altre produzioni).

Le coperture vegetali Effetti positivi della copertura vegetale:

- protegge il terreno dall'erosione ad opera del vento, dell'acqua e del sole
- consente di incrementare in maniera uniforme la porosità del terreno, migliorandone anche la capacità di ritenzione idrica.

Inerbimento

E' un metodo di conduzione del terreno nel quale il vigneto è consociato ad una copertura vegetale composta da specie spontanee o seminate. Tale consociazione può essere permanente o limitata solo ad alcuni periodi dell'anno e può interessare tutta la superficie del vigneto o soltanto le strisce localizzate sulla fila o nell'interfila.

Inerbimento

Esso si propone come metodo di gestione del suolo nel vigneto biologico, e comporta una netta diminuzione delle azioni di disturbo meccanico del terreno, con conseguente salvaguardia della struttura, del contenuto di sostanza organica e della fertilità.

L'inerbimento può svolgere un ruolo fondamentale sulla complessità dell'agro-ecosistema e nell'equilibrare tutti i fenomeni chimici, fisici e biologici che in esso si svolgono.

Effetti dell'inerbimento sul terreno

- Riduzione dell'erosione
- Salvaguardia e miglioramento della struttura del terreno
- Miglioramento della ritenzione idrica
- Riduzione dei fenomeni di compattamento
- Aumento del contenuto di sostanza organica
- Contenimento della lisciviazione dell'azoto
- Aumento dell'attività biologica nel terreno
- Assetto vegetativo e produttivo
- Apparati radicali
- Stato fitosanitario e nutrizionale

Inerbimento naturale temporaneo

Tipologia adatta per l'ambiente del bacino del meridionale. Consiste nel lasciare inerbire spontaneamente il campo, fino al momento in cui la flora spontanea non viene ritenuta più utile.

Di solito il terreno viene lasciato inerbito durante la stagione autunno-invernale, quando la presenza della flora spontanea non esercita alcuna competizione nei confronti della vite, ma comporta anche dei vantaggi riguardanti, la protezione del terreno dall'erosione e il contenimento della lisciviazione dei nitrati.

L'erbaio può essere successivamente sovesciato superficialmente oppure trinciato e l'epoca nella quale si effettua questa operazione è anticipata nei vigneti non irrigui.

La concimazione verde

Effetti positivi della concimazione verde:

- Fissazione dell'azoto (Leguminose)
- Trasformazione dell'azoto residuo nel terreno in azoto organico (Crucifere -Graminacee)
- Sbriciolamento ed aerazione del terreno (Graminacee - Favino)
- Rapida copertura del suolo (Colza -Rafano -Senape)
- Risparmio di acqua (Sovescio autunno vernino)
- Lotta alle infestanti (Crucifere)

Il sovescio

- Consente di mantenere un certo livello di sostanza organica nel terreno a costi non elevati.
- Sono utilizzabili numerose specie erbacee tra leguminose (veccia, trifogli, pisello, lupino) e graminacee (segale, avena, orzo, festuca), la cui scelta varia in funzione delle caratteristiche pedoclimatiche della zona.
- E' consigliabile utilizzare dei miscugli di leguminose e graminacee per ottenere l'effetto combinato delle differenti specie: le leguminose forniscono un humus poco stabile ma una maggiore quantità di azoto rispetto alle graminacee che invece portano alla formazione di un humus durevole

Il sovescio ha facilit funzione di facilitare la dinamica degli elementi minerali e di migliorare le caratteristiche fisiche Negli del terreno. ambienti caldo umidi eè bene dare preferenza ai miscugli autunno-vernini od autunno-primaverili.

Impiego di materiale organico di origine vegetale o animale.

L'obiettivo principale è quello di migliorare le caratteristiche del terreno sotto l'aspetto fisico, chimico e microbiologico.

Fra i materiali organici impiegati nella fertilizzazione sono indicati:

- Letame
- Residui colturali e di vinificazione
- Residui di industrie agroalimentari
- Combinazione di materiali organici dopo il processo di compostaggio

Letame

- Gli effetti positivi del letame si espletano sul:
- miglioramento della struttura del terreno favorendo la struttura e riducendo i fenomeni di erosione e costipamento
- Apportare al suolo di microrganismi
- aumenta della capacità di ritenzione idrica del terreno ed incremento alla resistenza alla siccità (fattore positivo negli ambienti meridionali)
- Ripristinare nel suolo dell'equilibrio tra i macro e microelementi al fine di evitare i fenomeni di carenze, di deperimento e di disseccamento del rachide.

Residui colturali

La necessità di mantenere nel terreno una dotazione ottimale di sostanza organica, pone il problema di reperire del materiale organico in sostituzione del letame che è scarsamente disponibile e ad alto costo.

La perdita di sostanza organica in un ettaro corrisponde a circa 10-15 quintali di humus per anno che può essere reintegrato con una buona letamazione.

In alternativa al letame, esistono altre fonti di sostanza organica rappresentate dai residui colturali della vite quali sarmenti, vinacce, raspi e foglie. La migliore forma di somministrazione dei quattro componenti viene fornita se essi hanno subito un processo di compostaggio preventivo alla somministrazione.

IL COMPOST IN VITICOLTURA BIOLOGICA

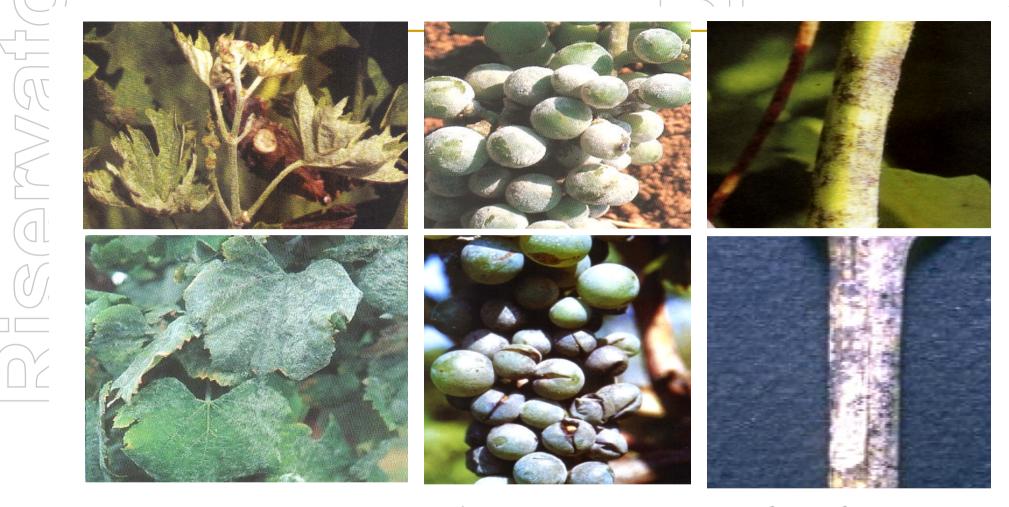
Il compost si ottiene da miscele di matrici di origine organica animale e vegetale. Il suo utilizzo in viticoltura biologica dipende dalla qualità di compost che si vuole somministrare. I quantitativi somministrati sono di solito inferiori a quelli di letame

Tabella 1 - Apporti in elementi nutritivi con 1 t di compost e di letame (*)								
	Umidità (kg/t)	Sostanza secca (kg/t)	Sostanza organica (kg/t)	N (kg/t)	P ₂ O ₅ (kg/t)	K₂0 (kg/t)		
Letame vaccino	750	350	192	5,5	6,6	6,0		
Compost da scarti verdi	500	500	220	5,5	2,5	2,0		
Compost da scarti alimentari	500	500	250	9,0	7,0	6,5		
Compost da fanghi	500	500	245	9,0	10,5	3,5		

IL COMPOST IN VITICOLTURA BIOLOGICA

Il compost in viticoltura viene somministrato in copertura di solito localizzandolo nell'interfilare e non viene interrato.

E' opportuno che il compost somministrato abbia un buon grado di stabilizzazione della sostanza organica per avere un rilascio dell'azoto più graduale che non comporti uno scadimento qualitativo dei frutti o una maturazione anticipata.


Difesa dalle principali fitopatie: OIDIO, MUFFA GRIGIA, PERONOSPORA.

Interventi agronomici

- " genetici (selezione CVs resistenti)
- " chimici (zolfo, rame)
- " biologici (difesa biologica)

Difesa in viticoltura biologica contro l'oidio della vite

(Tel.: Erysiphe necator Schw. (sin. = Uncinula necator Schw. Burr.); an.: Oidium tuckeri (Berck.)

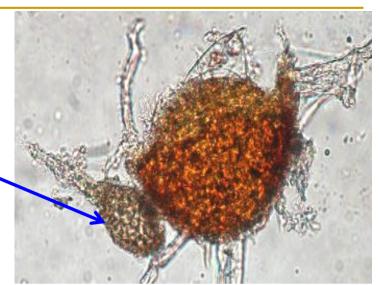
DANNI QUANTITATIVI: riduzione vegetazione – fruttificazione – maggiore suscettibilità freddi invernali, infezioni secondarie (muffa grigia, funghi micotossinogeni);

DANNI QUALITATIVI: alterazione aromi vino (3-5%) - riduzione fotosintesi - decremento concentrazione zuccheri + incremento acidità totale = ritardo maturazione uve.

Strategie di controllo:

- *Zolfo (ogni 7-10 giorni di zolfo bagnabile o zolfo in polvere nelle zone più a rischio);
- •difesa durante tutto il periodo di potenziale attacco;
- *trattamenti allo stadio di 2-3 foglie.
- •DIFESA BIOLOGICA: fungo antagonista Ampelomyces quisqualis (minimo 2 interventi), in miscela con olio bianco o olio di pino (eseguire i trattamenti a distanza di 21 giorni da quelli di zolfo).

A. quisqualis: parassita oidio


- Conidio di A. quisqualis;
- germinazione;
- tubulo germinativo;
- penetrazione all'interno delle ife del fitopatogeno;
- sviluppo del micelio del parassita dentro il micelio dell'oidio;
- devitalizzazione del fitopatogeno (trattamento curativo).

Parassitizzazione di tutte le strutture di *E.* necator.

A. quisqualis

picnidi e conidi

Formulati commerciali a base di propaguli di un ceppo A. quisqualis (isolato in Israele e denominato 10 da cui il nome commerciale di AQ10).

A. quisqualis

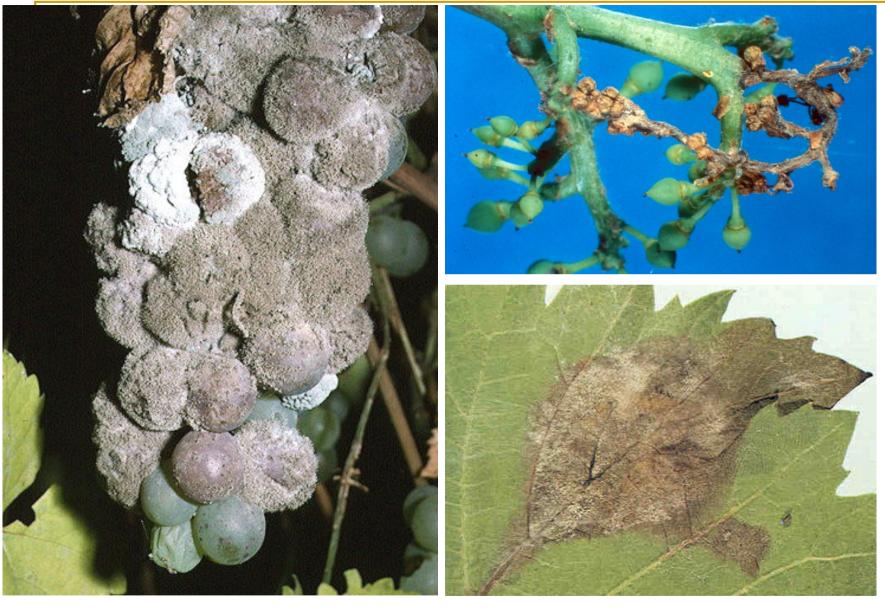
Vantaggi

- attivo già a 12°C (mentre zolfo inefficace).
- innocuo per uomo ed organismi non target (selettivo);
- nessuna attività metabolica secondaria a rischio (no produzione di antibiotici o tossine);
- tempo di carenza nullo (utilizzabile anche alla raccolta);
- possibilità di adattamento alle condizioni colturali (sviluppo su altre specie di oidio).

Svantaggi:

- -azione di biocontrollo lenta (5-7 gg; migliore se il patogeno è in fase iniziale);
- -Elevata U.R. (contrariamente all'oidio);
- -limitate T (max 28°C) e radiazione UV;
- -convivenza con il patogeno (tolleranza ai danni).

Corretto impiego di A. quisqualis


- •Bassa pressione di malattia, (max 3% di superficie fogliare infetta);
- almeno 2 applicazioni consecutive (a distanza di 7-10 giorni);
- •olio minerale paraffinico estivo per idratazione delle spore (0,1-0,3% in volume, mattino o sera);
- •irroratrici con filtri con mesh superiori a 100;
- *strategie di lotta integrata che prevedano anche l'impiego di zolfo.

Difesa in viticoltura biologica contro la muffa grigia della vite

(Tel.: Botrytis cinerea Pearson Fries; an.: Botryotinia fukeliana (de Bary) Whetzel x Hazel)

Mosti di difficile fermentazione e vini facilmente soggetti alla casse ossidasica; sensibili danni alle uve da mensa

Strategie di difesa integrata:

- contenere la vigoria;
- favorire l'arieggiamento dei grappoli;
 - fertilizzazione moderata;
 - irrigazioni contenute;
 - varietà con grappolo non compatto;
 - difesa da tignoletta;
 - sali di rame in fase di pre-chiusura grappolo;
 - Bacillus subtilis molto efficace

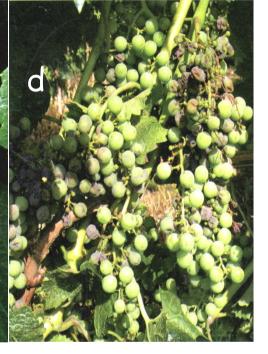
Difesa in viticoltura biologica contro la peronospora della vite

Plasmopara viticola (Berk. et Curt.) Berl. et De Toni



Filloptosi anticipata;

casi estremi: completa defogliazione



Sintomi e segni su grappolo

riduzione produzione quali-quantitativa annata in corso e successive

Difesa

interventi indiretti o agronomici:

permeabilità dei terreni- concimazioni razionali (sviluppo vegetativo ospite moderato) - spollonature tronco (no infezioni su germogli) - sistemazione tralci/grappoli (no focolai infettivi tardivi e migliore difesa chioma).

interventi diretti o chimici razionali (rame – agrofarmaco di copertura – preventivo; soggetto a limiti di impiego;... bicarbonato di potassio – permanganato di potassio...): previsione infezioni 1°

regola dei "3 dieci" (10°C/10 mm pioggia 24/48 h/10 cm tralcio) + calcolo durata incubazione (gg.)

(Lotta guidata)

Autunno/inverno piovosi (oospore mature)
presenza inoculo attivo = oospore germinate + condizioni
regola dei "3 dieci"

infezione 1° avvenuta e avvio incubazione (temperatura)

1° intervento chimico ~ 80% durata incubazione

pioggia 1-2 mm o elevata U.R.= evasione 1° infezione

infezioni 2°.... interventi ~ 80% incubazione

D. Lgs. 75/2010: Riordino e revisione della disciplina in materia di fertilizzanti

- a) "Prodotti ad azione specifica Prodotti ad azione sul suolo Inoculo di Funghi Micorrizici"
- b) "Prodotti ad azione specifica Biostimolanti" MICORRIZE

Associazioni simbiotiche mutualistiche tra radici di vegetali e funghi del suolo.

Nella vite: Glomus spp., Acaulospora spp., Gigaspora spp.

MICORRIZE DELLA VITE

- Migliore nutrizione minerale (assimilazione del fosforo);
- aumento della superficie radicale e fattori correlati (assunzione di acqua ed elementi minerali - riduzione concimazioni;
- resistenza a stanchezza del terreno;
- tolleranza al cloruro di sodio, al calcare e ai metalli pesanti;
- resistenza a vari patogeni del suolo;
- migliore radicazione e affrancatura (aumento numero dei primordi radicali).

FORMULATI COMMERCIALI CON SPORE DI FUNGHI MICORRIZICI

Bioplanet: Glomus intraradices - Ozor e Mycor

Cerrus: Glomus spp. - Symbiomic

CCS Aosta srl: Glomus spp. - Micosat F TAB WP e FVO12

WP

Italpollina: Glomus spp. - TIFI

Rischio funghi tossinogeni nelle uve e di micotossine nei mosti e nel vino

Decreto 16 maggio 2006 - Ministero delle Politiche Agricole e Forestali: Adozione del "Codice di buone pratiche vitivinicole" (GU 125 31/5/2006)

"per la prevenzione antibotritica, preferire fungicidi efficaci contro *A. carbonarius* (responsabile della produzione di ocratossine)"

Conclusioni:

- 1) gestione del vigneto in biologico: NON FACILE, MA POSSIBILE;
- 2) inserimento, nei disciplinari, di altri "principi attivi" in grado di limitare le popolazioni e i danni dei parassiti.
- 3) Consultazione preventiva della banca dati sui prodotti fitosanitari impiegabili in Agricoltura Biologica consultabile al sito:

http://www.salute.gov.it/fitosanitariwsWeb_new/FitosanitariServlet - See more at: http://www.federbio.it/Mezzi_tecnici.php#sthash.tTKWFadk.dpuf